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Abstract In the present study, a finite volume approach for solving two-dimensional, two-fluids
flows with heat and mass transfer was developed for predicting the flow of particulate materials
through pneumatic dryer. The model was solved for a two-dimensional steady-state condition and
considering axial and radial profiles for the flow variables. A two-stage drying process was
implemented. The numerical procedure includes discretization of calculation domain into
torus-shaped final volumes, solving the gas phase conservation equations by a modified
semi-implicit method for pressure-linked equations algorithm, and the conservation equations of
particulate phase were solved by the explicit forward difference algorithm. The mass momentum
and energy coupling between the phases were considered by principles of the Interphase slip
algorithm. In order to validate the theoretical and the numerical models, the developed models were
applied to simulate the drying process of wet PVC particles in a large-scale pneumatic dryer and to
the drying process of wet sand in a laboratory-scale pneumatic dryer. The predictions of the
numerical simulations were compared successfully with the results of independent numerical and
experimental investigations. Following the models validation, the two-dimensional distributions of
the flow characteristics were examined.
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Notation
A ¼ area (m2)
a ¼ coefficient in the discretization

equation
b ¼ constant term in the

discretization equation
c ¼ specific heat ( J/kg K)
cp ¼ specific heat at constant pressure

( J/kg K)
Cd ¼ drag coefficient
Cvm ¼ virtual mass coefficient
d ¼ coefficient of the pressure

difference term
D ¼ diffusion conductance at cell face

( kg/m2s)
Dp ¼ particle diameter (m)
Di ¼ diameter of the wet core

particle (m)
Do ¼ dry crust diameter (m)
Dv ¼ diffusion coefficient of water

vapor in air within a pore (m2/s)

F ¼ convective mass flux per unit
area (kg/m2s)

Fa ¼ force per unit volume of the
a-phase ( N/m3)

g ¼ gravity acceleration (m/s2)
Ha ¼ enthalpy of the a-phase ( J/kg)
Hgd ¼ enthalpy of the water vapor ( J/kg)
h ¼ heat transfer coefficient (W/m2K)
hd ¼ convective mass transfer

coefficient (m/s)
k ¼ thermal conductivity ( W/mK)
M ¼ molecular weight (kg/kmole)
MH2O ¼ molecular weight of water

(kg/kmole)
Nd ¼ number of particles per unit

volume (m23)
Nu ¼ Nusselt number
m ¼ mass (ng)
_md ¼ evaporation rate, from a single

particle (kg/s)
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Introduction
Generally, three types of theoretical approaches can be used for modeling the
gas-particles flows in the pneumatic dryers, namely, Two-fluid Theory (Bowen, 1976),
Eulerian Granular (Gidaspow, 1994) and the Discrete Element Method (Cundall and
Strack, 1979). Traditionally, the Two-fluid Model was used to describe a dilute phase
flow. In dilute phase flow, particle-particle and particle-wall interactions are usually
being neglected (Crowe, 1982). The theory is based on macroscopic balance equations
of mass, momentum and energy for both the gas and the solid phases. The model
treated the dispersed phase, i.e. the solid phase as a pseudo-fluid and assumed that
both phases are occupying every point of the computational domain with its own
volume fraction. Often, the flow in a pneumatic dryer can be classified as dilute phase
flow and, therefore, it was decided to adopt this method in this study.

A wide spread approach to predict the drying process is based on a steady state
one-dimensional mathematical formulation of the conservation equations. Using this
approach one can predict the average values of various properties of the phases in
cross sections of the dryer (Andrieu and Bressat, 1982; Baeyens et al., 1995;
Levi-Hevroni et al., 1995; Levy and Borde, 1999; Levy et al., 1988; Mindziul and Kmiec,
1996 and Rocha and Paixão, 1996).

In contrast to traditional one-dimensional models, in the present study, the
two-dimensional pneumatic drying model of Skuratovsky et al. (2003) was
adopted. The model is based on the Two-fluid Eulerian theory and was used to
describe the steady state, two-dimensional dilute phase flow of a wet dispersed
phase (wet solid particles) in a continuous gas phase through a pneumatic dryer.

p ¼ pressure (Pa)
pv ¼ partial pressure of water vapor (Pa)
Pr ¼ Prandtl number
Qa ¼ heat transfer between the phases per

unit volume (W/m3)
R ¼ gas constant (J/kg K)
Re ¼ Reynolds number
Sc ¼ Schmidt number
Sm ¼ mass transfer per unit length (kg/ms)
Sh ¼ Sherwood number
Ta ¼ temperature of the a-phase (K)
Ts ¼ crust temperature (K)
Twall ¼ pipe wall’s temperature (K)
Tave ¼ average temperature

½; 0:5ðTs þ TdÞ� (K)
ur ¼ ð; ug 2 udÞ relative velocity

between the phases (m/s)
ua ¼ velocity of the a-phase (m/s)
V ¼ volume (m3)
Wa ¼ work per unit length done

between the phases (W/m)
Xw ¼ water vapor mass concentration in

the gas phase
Yw ¼ molar concentration of water

vapor in the gas phase

Greek Symbols
1 ¼ void fraction of the particle (porosity)
mg ¼ gas dynamic viscosity
ra ¼ density of the a-phase
rva ¼ water vapor density at the

a-phase
r ¼ density
j ¼ water concentration in the particle
fa ¼ volume fraction of the a-phase
w ¼ dummy property

Subscripts
d ¼ the dispersed phase
da ¼ dry air properties
e ¼ east face of the control volume
g ¼ the gas phase
n ¼ north face of the control volume
sat ¼ saturation
s ¼ solid properties or south face of

the control volume
v ¼ vapor properties
w ¼ water properties or west face of

the control volume
wa ¼ water properties in air
wd ¼ water properties in dispersed phase
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In order to validate the numerical model, the predictions of the numerical solutions
were compared with the results of other one-dimensional numerical solutions and
experimental data of Baeyens et al. (1995) and Rocha (1988). In addition, the axial
and the radial distributions of the characteristic properties were examined.

The present study
Owing to the fact that detailed derivations of the governing equations can be found in
Skuratovsky et al. (2003), in the following, only the final form of the two-dimensional
governing equations and the assumptions on which their derivation was based are
presented.

The pneumatic drying model is based on the following assumptions.
. The gas behaves as an ideal gas.
. Steady-state flow.
. The gas phase is a mixture of water vapor with air.
. Influence of gravity on gas phase is neglected.
. Dispersed phase behavior id like continuous phase behavior.
. The particles are made from a substance containing a solid porous matrix and

liquid or gas with liquid-vapor.
. At the first drying stage, the particle is isothermal and at the second drying stage

the particle wet core temperature is different from that of dry crust.
. The specific densities of the liquid and the solid, which compose the particle, are

constants.
. The influence of the pressure gradient on the inertia of the solid particles is

negligible in comparison to that of the drag force.
. Mass, momentum and heat transfer occur only between the two phases and not

between the particles themselves.
. Heat transfer can occur between the pipe wall and the continuous gas phase.
. Conductive heat flux is negligibly small in comparison with the convective heat

flux in the Z direction.
. The flow in the dryer is vertical, two-dimensional, non-rotational and axisymmetrical.
. Non-slip and non-penetrating wall conditions.
. Electrical and surface tension forces are neglected.

It should be pointed out here that based on the assumption that the two-dimensional
vertical flow is non-rotational and axisymmetrical both phases’ velocities have only
one component, which is in the Z direction and they are a function of both the axial and
the radial location in the pipe. Based on the above-mentioned assumptions the
conservation equations of the gas and the solid phases were written.

. Mass balance of the gas-phase

›ðrgugfgÞ

›z
¼ Sm ð1Þ

. Momentum balance of the gas-phase
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In dilute phase flow, the cross sectional area of the particles in the pipe is usually small,
and therefore, the influence of the pressure gradient on the inertia of the solid particles
is negligible in comparison to that of the drag force. Hence, it was assumed that the
pressure gradient contributes only to the momentum of the gas phase.

› rgu2
gfg

� �
›z

¼ 2
›P

›z
þ

1

r

›

›r
rfgmg

›ug

›r

� �� �
þ Fg þ Smud þ

›

›z
fgmg

›ug

›z

� �
ð2Þ

. Energy balance equations of the gas phase

›

›z
fgrgug Hg þ

u2
g

2

 !" #
¼

1

r

›

›r
fgkgr

›Tg

›r

� �
þ Qg 2 W g

þ Sm Hgd þ
u2

d

2

� �
ð3Þ

. Mass balance of the dispersed phase

›ðrdudfdÞ

›z
¼ 2Sm ð4Þ

. Momentum balance equation of dispersed phase

› rdu2
dfd

� �
›z

¼ 2rd gfd þ Fd 2 Smud ð5Þ

. Energy balance equations for dispersed phase

›

›z
fdrdud Hd þ

u2
d

2

� �� �
¼ Qd 2 W d 2 rdudfd g 2 Sm Hgd þ

u2
d

2

� �
ð6Þ

Subtracting the momentum balance equation of the dispersed phase (equation (5))
multiplied by the dispersed phase velocity from it’s energy balance equation results in

›

›z
½fdrdudcsTd� ¼ Qd 2 SmHgd ð7Þ

Complimentary equations
In order to solve the above set of differential equations, several complimentary
equations, definitions and empirical correlations are required. These will be presented
subsequently. It should also be noted that both the gas and the dispersed phases are
mixtures and hence all their thermodynamics properties were calculated using the
mixture theory.

. The volume fraction definition and equation

fg ¼
V g

V
; fd ¼

V d

V
; fg þ fd ¼ 1 ð8Þ

. Drag forces
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The acting forces per unit volume between the phases that were taken into account
were due to drag and virtual-mass.

Fd ¼ 2Fg ¼ Ndrg Cd

pD2
p

4

1

2
urjurj þ cvm

pD3
p

6
ud

dur

dz

" #
ð9Þ

where the number of the particles per unit volume, Nd, was expressed by

Nd ¼
6fd

pD3
p

ð10Þ

The drag coefficient, Cd, was calculated via the correlations that have been presented
by Ossen et al. and can be found in Clift et al. (1987).

Cd ¼
64

pRe
1 þ

Re

2p

� �
for Re , 0:01

Cd ¼
64

pRe
ð1 þ 10xÞ for 0:01 , Re , 1:5

x ¼ 20883 þ 0:906LgðReÞ2 0:025ðLgðReÞÞ2

Cd ¼
64

pRe
ð1 þ 0:138Re0:792Þ for 1:5 , Re , 133

LgðCdÞ ¼ 2:0351 2 1:66LgðReÞ þ Lg 2ðReÞ2 0:0306Lg 3ðReÞ

for 40 , Re , 1000

ð11Þ

The effective mass of the dispersed phase is usually described by the virtual-mass
coefficient, Cvm. In general, this coefficient is a function of the volume fraction of the
dispersed phase, fd, and the particle shape, but it is often taken as constant. For a rigid
spherical particle Cvm ¼ 0:5 and this value was used in the course of this work (Clift
et al., 1987).

Work and heat transfer
The work acting between the two phases per unit length was written as

W g ¼ 2W d ¼ 2Fgud ¼ Fdud ð12Þ

The convective heat transfer between the phases was expressed by

Qd ¼ 2Qg ¼
6fd

Dp
hðTg 2 TsÞ ð13Þ

The convective heat transfer coefficient, h, was calculated from the Nusselt number,
Nu, which is often expressed as a function of the Reynolds number, Re, and Prandtl
number, Pr.
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Nu ¼
hDp

kg
¼ FðRe;PrÞ; Re ¼

rgjurjDp

mg
; Pr ¼

mgcpg

kg
ð14Þ

Various empirical correlations may be found in the literature. Baeyens et al. (1995)
present various empirical correlations that may be used to calculate the heat transfer
coefficient, but only two of them, which were originally developed for a pneumatic
dryer, yield good agreement with experimental data (Levy and Borde, 1999). In the
present study the correlation that was developed by Baeyens et al. (1995) for large scale
pneumatic dryer was applied.

Nu ¼ 0:15 Re ð15Þ

During the second drying period, the model assumed that the particle consists of a dry
crust surrounding a wet core. Hence, the particle is characterized by two temperatures,
i.e. the particle’s crust and core temperatures, Ts and Td, respectively. Furthermore, it
was assumed that the heat transfer from the particle’s crust to the gas phase is equal to
that transferred from the wet core to the gas phase. Thus, the following heat balance
equation can be written.

ðTg 2 TsÞ
1

hpD2
p

 !21

¼ ðTg 2 TdÞ
1

hpD2
p

þ
Dp 2 Di

2pDpDikps

 !21

ð16Þ

Mass transfer
The mass transfer source term can be obtained by multiplying the evaporation rate
from a single particle, _md; by the total number of particles per unit volume, i.e.

Sm ¼ Nd _md ð17Þ

In the first drying period, the gas phase resistance controls the evaporation rate. The
resistance between the gas and the wet envelope of the wet particle was expressed by

_md ¼ hdpD2
p

Mwpvo

RTs
2

Mwpvg

RTg

� �
ð18Þ

When the liquid evaporated from the particle surface and it filled all the voids inside
the porous particle, the second drying period starts. The critical solid-to-liquid mass
ratio, which is obtained from the minimum void fraction, i.e. the porosity of the
particles, 1, controls the transfer between drying periods and as a consequence, it
controls the mass transfer model that was used. For the purpose of numerical
calculation, the model takes a representative value of 0.15 for the particle porosity.
During the second period of the drying process, the dry crust causes additional
resistance to heat and mass transfer. This resistance is governed by a diffusion
process. During this period, the outside diameter of the particle, Do, is assumed to
remain constant and the diameter of the wet core, Di, decreases. The evaporation rate
from a particle with a dry crust can be expressed by Stephan-type diffusion rule (Abuaf
and Staub, 1987). Assuming that the mass flow rate of vapor emerging out from the
crust is equal to that of the liquid evaporating and diffusing out of the wet core, an
implicit equation for calculating the evaporation rate, _md; can be obtained.
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_md ¼ 2
Di 2 Do

DoDi

2p1Dvp

RTave
‘n ð p 2 psatÞ= p 2

RTs

hdpD2
oMw

_md 2
pvgTs

Tg

 ! !
ð19Þ

The mass transfer coefficient, hd, was calculated in analogy to the heat transfer
coefficient, h, from the Sherwood number, Sh, which is equivalent to the Nusselt
number, Nu

Sh ¼
hdDp

Dv
¼ FðRe; ScÞ; Sc ¼

mg

rgDv
ð20Þ

Equation (15) was used to calculate the Sherwood number, Sh and the mass transfer
coefficient, hd during this study.

Particle diameter
The diameter of the wet particle during the first drying period was calculated by

dDp

dz
¼

2

udpD2
prwd

Sm

Nd
ð21Þ

In general, during the second drying period, the outer shape of particle might be
changed due to the shrinkage of both outer and core diameter. However, to simplify
the model, it was assumed that the particle outer diameter remains constant during the
second drying period. Thus, only the change of the wet core diameter, Di, was
considered.

dDi

dz
¼

2

1udpD2
i rwd

Sm

Nd
ð22Þ

Particle’s water concentration
The mass concentration of the water in the particle was defined by

j ¼
mwd

mwd þ ms
ð23Þ

The change of water mass concentration in the particle along the dryer was described
as a function of the mass transfer between the phases as

dj

dz
¼

6ð1 2 j Þ

udrdpD3
p

Sm

Nd
ð24Þ

Particle density
Since the particle is composed of both liquid water and porous solid structure, its
density is dependent on the liquid and solid intrinsic densities and on the particle’s
water concentration.

1

rd
¼

j

rwd
þ

ð1 2 jÞ

rs
ð25Þ
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Water vapor diffusion equation and equation of state for the gas phase
The mass and the molecular concentrations of water vapor in the gas phase were
defined by

Xw ¼
mwa

mg
¼

mwa

mda þ mwa
Y w ¼

XwMda

XwMda þ ð1 2 XwÞMH2O
ð26Þ

In order to take into consideration the influence of the water vapor on the gas phase
density, the molar concentration of the water vapor in the gas phase was used together
with the ideal gas equation in the following way

Rg ¼
R

Mg
; Mg ¼ Y wMH2O þ ð1 2 Y wÞMda; rg ¼

P

RgTg
ð27Þ

The water vapor distribution in the gas phase was calculated by the water vapor
diffusion equation.

›

›z
ðfgrgugXwÞ ¼

›

r›r
Dvrgfgr

›Xw

›r

� �
þ

›

›z
Dvrgfg

›Xw

›z

� �
þ Sm ð28Þ

Numerical model
The above-mentioned mathematical model cannot be solved by any analytical method.
Therefore, it was decided to solve the model numerically. The numerical procedure
includes discretization of the calculation domain into torus-shaped final volumes
(Figure 1). The gas-phase conservation equations (2), (3) and (28) are a set of parabolic
partial differential equations (PDE) and the solid phase balance equations obtained as a
set of ordinary differential equations (ODE). Therefore, a splitting technique was
applied for solving the two sets of differential equations over the computational
domain. The gas phase conservation equations were solved by a modified
Semi-implicit method for pressure-linked equations (SIMPLE) algorithm (Patankar,
1980) and the solid phase equations were solved by forward difference approximation.
The various coupling terms between both phases were considered by principles of the
Interphase slip algorithm (IPSA) (Spalding, 1983).

Generally, calculations of the scalar variables w (such as, temperatures, densities,
etc.) are dependent on the magnitude and direction of the velocity field. To evaluate the

Figure 1.
Typical torus-shaped final

volume
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velocity field of the gas phase, both momentum and continuity equations need to be
solved. The solution of these equations presents three new problems.

. The convective terms of the momentum equation contain non-linear terms,
e.g. ›ðrgu2

gfgÞ=›z:
. Transport equations are intricately coupled with the velocity components.
. Complicated way to evaluate pressure field, evidently no equation for pressure.

If the pressure gradient is known, the process of obtaining discretized equations for the
velocity from the momentum equation is similar for any other scalar and will be
presented in a following section. The problems associated with the non-linearity in the
momentum equation and the pressure-velocity linkage can be resolved by adoption of
an iterative solution strategy, such as the SIMPLE algorithm of Patankar (1980), for the
continuous phase flow and accounting for the various coupling between the phases, in
multiphase flows, by the principles of the IPSA (Spalding, 1983).

The finite volume approach
Since the pneumatic drying model can only be solved numerically, the values of the
various model’s variables can be obtained in discrete points of the computational
domain. Hence, the numerical procedure includes discretization of the calculation
domain into torus-shaped final volumes. In our developed model, a “staggered grid”
was adopted. The various motivations for adoption of “staggered grid” can be found in
Versteeg and Malalasekera (1998). The idea is to evaluate scalar variables, such as
pressure, temperature, etc., at ordinary nodal points and to evaluate vector variables,
such as the phase velocity, on staggered grids centered with the cell faces.

The implementation of the axisymmetric staggered gird is shown in Figure 2.
The scalar variables are stored at the nodes marked (W). The velocities are defined at
the cell faces in between the nodes and are indicated by arrows () ). The solid grid
lines are numbered by means of capital letter. In the z-direction the numbering is . . . ,
I 2 1, I, I þ 1, . . . etc., and the r-direction . . . , J 2 1, J, J þ 1, . . . etc. Lower case letters
denotes the dashed lines that construct the faces of the scalar cells . . . , i 2 1, i, i þ 1, . . .
and . . . , j 2 1, j, j þ 1, . . . in the z- and r-direction, respectively. A subscript system
based on these indexes was used to define the locations of grid nodes and cell faces.
Scalar nodes are located at the intersection of two solid grid lines and are identified by
two capital letters; e.g. point P in Figure 2 that is denoted by ( I, J ). The velocities are
stored at lateral faces of a scalar finite control volume. These are located at the
intersection of a dashed line defining a cell boundary and a solid grid line and are,
therefore, defined by a combination of a lower and a capital case letters;, e.g. the w-face
of the cell around point P is identified by ( i, J ).

Discretization of the gas phase conservation equations
The momentum conservation equation of the gas phase, in its integral form, can be
expressed by

ai; J ui;J ¼
X

anbunb þ ð pI21; J 2 pI ; J ÞAi; J þ bi; J ð29Þ

where bi; J ¼ �SDV is the momentum source term multiplied by the finite volume of
the computed cell and Ai,j is the (east or west) cell face area of finite volume.
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The pressure gradient source term has been discretized by means of a linear
interpolation between the pressure nodes. The summation of anbunb are calculated with
the values of the neighbors cells, i.e. E, W, N and S, ( I21, J ), ( I + 1, J ), ( I, J + 1) and
( I, J 2 1), respectively. The values of the coefficients ai, Jui, J and anbunb may be
calculated by any type of the differencing methods (upwind, hybrid QUICK) that is
suitable for convection-diffusion problems (Versteeg and Malalasekera, 1998). In the
present study, a hybrid scheme (Spalding, 1972), which is based on a combination of
central and upwind differencing schemes, was used. A second-order central
differencing scheme was employed for small Peclet numbers (Pe, 2) while a
first-order upwind scheme was employed for large Peclet numbers (Pe $ 2). The
hybrid-differencing scheme uses piecewise formulae based on the local Peclet number
to evaluate the net flux through each control volume face. The Peclet number is
evaluated at each face of the control volume. For example, the Peclet number at the
west face is calculated by

Pew ¼
Fw

Dw
¼

ðrufÞw

Gw=dzWP
ð30Þ

For two-dimensional flow the discretized form of a conservation equation for a scalar
property, w, can be written as

aPwP ¼ aWwW þ aEwE þ aSwS þ aNwN ð31Þ

Figure 2.
The staggered grid
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where the coefficients ai of the property w for the hybrid differencing scheme are
presented in Table I. The hybrid difference scheme exploits the favorable properties of
the upwind and central differencing schemes. The scheme is fully conservative and is
unconditionally bounded. The scheme produces physically realistic solutions and is
highly stable when compared with the higher order schemes. The disadvantage is that
the accuracy in terms of Taylor series truncation error is only first-order (Versteeg and
Malalasekera, 1998). The coefficients ai contain combinations of the convective flux per
unit mass, F, and the diffusive conductance, D, at cell faces (faces of the shaded control
volume in Figure 2). Applying the new notation system the values of F and D for each
of faces e, w, s and n of the control volume was written.

Fw ¼ ðrufÞw ¼
Fi; J þ Fi21; J

2

¼
1

2

rI ; JfI ; J þ rI21;JfI21; J

2

� �
ui; J þ

rI21; JfI21; J þ rI22; JfI22; J

2

� �
ui21; J

� �
ð32Þ

Fe ¼ ðrufÞe ¼
Fiþ1; J þ Fi; J

2

¼
1

2

rIþ1; JfIþ1; J þ rI ; JfI ; J

2

� �
uiþ1; J þ

rI ; JfI ; J þ rI21; JfI21;J

2

� �
ui; J

� �
ð33Þ

Based on the above mentioned assumption, there are no radial velocity components,
and therefore,

Fn ¼ Fs ¼ 0 ð34Þ

Dw ¼
GI21; J

dr
; for dr ¼ const ð35Þ

De ¼
GI ; J

dr
; for dr ¼ const ð36Þ

Ds ¼
GI21; J þ GI ; J þ GI21; J21 þ GI ; J21

4dz
; for dz ¼ const ð37Þ

Dn ¼
GI21; Jþ1 þ GI ; Jþ1 þ GI21; J þ GI ; J

4dz
; for dz ¼ const ð38Þ

Coefficients Expression

aP aP ¼ aW þ aE þ aS þ aN þ DF

aW max Fw; Dw þ Fw

2

� �
; 0

� �
aE max 2Fe; De 2

Fe

2

� �
; 0

� �
aS max Fs; Ds þ

Fs

2

� �
; 0

� �
aN max 2Fn; Dn 2

Fn

2

� �
; 0

� �
DF Fe 2 Fw þ Fn 2 Fs

Table I.
Coefficients of the general
discretized form of a
conservation equation for
a scalar property, w
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Discretization of the solid phase conservation and other transport equations
The solid phase balance equations and other transport equations (equations (21), (22)
and (24)), were obtained as a set of ordinary differential equations. The general form of
these equations is

dw

dz
¼ f ðwÞ ð39Þ

The left side expression was evaluated by first-order forward difference approximation.

dw

dz
¼

wðz0 þ DzÞ2 wðz0Þ

Dz
ð40Þ

The solution algorithm
The developed solution algorithm, shown in Figure 3, is based on the SIMPLE
algorithm for solving pressure-linked equations. Since the discrete form of the balance
equations present the solution variables over the computational domain implicitly,
prediction-correction procedure for calculating the pressure and the model’s unknowns
in the staggered grid was used. The couplings between the phases were considered by
the principles of the IPSA.

The solution starts with initial guess of the pressure field p*. Then the velocity field
of the gas phase is obtain by solving the discretized momentum equation for gas phase
(equation (29)), to obtain the gas phase velocity, u* at the cells’ interfaces.

ai; J u*i; J ¼
X

anbunb þ ð p*I21; J 2 p*I ; J ÞAi; J þ bi; J ð41Þ

In order to correct the initial guess of the pressure field a correction pressure, p0, was
define by the difference between the correct pressure field p and the guessed pressure
field p*

p* ¼ p 2 p0 ð42Þ

Similarly, velocity correction was defined as the difference between the correct velocity
field u and the solution of the guessed gas phase velocity, u*.

u* ¼ u 2 u0 ð43Þ

Substitution of equations (41)-(43) into (29) together with some mathematical
manipulations results in the equation for velocity correction.

ai; J u
0
i; j ¼

X
anbu0

nb þ ð p0I21;J 2 p0I ; J ÞAi; J ð44Þ

Now the well known approximation of the SIMPLE algorithm
P

anbu0
nb < 0 was

adopted and equation (44) was simplified. Detailed explanation on this approximation
can be found in Patankar (1980).

u0
i; J ¼ di; J ð p0I21; J 2 p0I ; J Þ ð45Þ

di; J ¼
Ai; J

ai; J

ð46Þ
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Figure 3.
Block diagram of the
solution’s algorithm

HFF
14,8

992



Finally, substitution of equation (45) back into the definition of the velocity correction
yields to

ui; J ¼ u*i; J þ di; J ð p0I21;J 2 p0I ; J Þ ð47Þ

Solving the momentum equation does not satisfy the continuity. Hence, the next step of
the algorithm is to solve the “pressure correction equation” that will satisfy the
continuity equation of the gas phase.

ðrfuAÞiþ1; J 2 ðrfuAÞi; J ¼ Sm ð48Þ

Substituting the solution of the gas velocity (equation (47)) into the continuity equation
(equation (48)) results in

riþ1; Jfiþ1; J Aiþ1; J ðu*iþ1; J þ diþ1; J ð p0I ; J 2 p0Iþ1; J ÞÞ

2 ri; Jfi; J Ai; J ðu*i; J þ di; J ð p0I21; J 2 p0I ; J ÞÞ ¼ Sm

ð49Þ

This may be rewritten to obtain the “pressure correction equation” for the two-fluid
model as

½ðrfdAÞiþ1; J þ ðrfdAÞi; J �p
0
I ; J ¼ ðrfdAÞiþ1; J p

0
Iþ1; J þ ðrfdAÞi; J p

0
I21; J

þ ½ðrfu*AÞi; J 2 ðrfu*AÞiþ1; J � þ Sm ð50Þ

or as

aI ; J p
0
I ; J ¼ aI21; J p

0
I21; J 2 aIþ1; J p

0
Iþ1; J þ b0I ; J ð51Þ

where,

aI ; J ¼ aIþ1; J þ aI21; J ð52:1Þ

aIþ1; J ¼ ðrfdAÞiþ1; J ð52:2Þ

aI21; J ¼ ðrfdAÞi; J ð52:3Þ

b0I ; J ¼ ðrfu*AÞi; J 2 ðrfu*AÞiþ1; J þ Sm ð52:4Þ

By solving the “pressure correction equation”, the continuity is satisfied and the
pressure correction field is obtained. Thus, the corrected pressure field can be obtained
by using equation (42) and recalculating the velocity filed by resolving equation (47).
The process of discretizing the governing equations of fluid flow, heat and mass transfer
results in a system of linear algebraic equations. Generally, direct and indirect methods
can be used for solving linear algebraic equations. For a large set of equations an indirect
iterative method is preferred. In this study, the tri-diagonal matrix algorithm (TDMA)
was adopted for solving the algebraic set of equations. This method is widely applied in
CFD programs and it solves the equations iteratively, in line-by-line fashion. Detailed
explanation concerning this technique can be found in Versteeg and Malalasekera
(1998). After evaluating gas phase pressure and velocity fields, the rest of the discretized
transport equation for the gas phase and the dispersed phase were solved and their
characteristics’ fields were obtained. The convergences of the various properties were
analyzed and the iteration starts again if the solution was not converged.
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Boundary condition
The boundaries of a pneumatic dryer include inlet, outlet and wall. In the present
study, it was assumed that the flow is aximertic with respect to the dryer center. Hence,
four types of boundary conditions were implemented, i.e. inlet, outlet, wall and
symmetry. The implementations of these boundary conditions are shown in Figure 4.
As can be seen, the grid was extended to store the values of the physical properties at
the boundaries. The boundary conditions applied in the discretized equation via source
term. It should be noted that only inlet boundary conditions are needed for solving the
unknowns that were considered via ordinary differential equations, i.e. dispersed
phase velocity, temperature, particles’ size diameter, etc. However, the influences on
these unknowns from the other boundaries were reflected via the interactions between
the phases.

Inlet boundary conditions. The distributions of all flow variables, except pressure,
were specified at the inlet to the pneumatic dryer. The flow direction was assumed to
be from the left to the right (Figure 4). Uniform inlet conditions were assumed.

Outlet boundary conditions. When the location of the outlet is far enough from the
inlet, the flow reaches a fully developed state where no change occurs in the flow
direction. At this boundary zero gradients for all variables, except pressure, in the flow
direction ð›=›z ¼ 0Þ were assumed. Additional grid line I ¼ NI þ 1 was imposed at
the outlet boundary conditions (Figure 4) and the values of the variables at the outlet
were substituted as flows.

wNIþ1; J ¼ wNI ; J ð53Þ

During the iteration cycles there is no guarantee that the normal velocities will
conserve mass over the computational domain as a whole. To ensure that overall
continuity is satisfied, i.e. the mass flux going out of the domain (Mout) is equal to that
entering into the domain (Min), the outlet velocity was calculated by

uNIþ1; J ¼ uNI ; J £
M in

M out
ð54Þ

Figure 4.
Mapping additional
cells for implantation
boundary condition
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The pressure field obtained by solving the pressure correction equation does not give
absolute pressure (Patankar, 1980), therefore a reference value of normal atmospheric
pressure for the absolute pressure was specified at the dryer outlet.

Wall boundary conditions. During this study, non-slip and non-penetrating wall
conditions were assumed. Therefore, the gas phase velocity in the additional grid line
was set to be zero ( J ¼ NJ þ 1; the grid line used for implementation wall boundary
conditions). Since there is no mass transfer of water through the pipeline wall, the
gradient of the water moisture content was set to zero, ð›Xw=›rjr¼R ¼ 0Þ: This was
implemented by setting the values of the water moisture content at the wall as the near
by cells, i.e. XI ; Jþ1 ¼ XI ; J :

Four types of boundary conditions are often being set for the gas phase temperature
in pneumatic dryers. These types are listed below.

. Constant wall temperature ðTwall ¼ constÞ:

. Known temperature profile ðTwall ¼ TðzÞÞ:

. Constant heat flax ð›T=›r ¼ constÞ:

. Adiabatic wall condition ð›T=›r ¼ 0Þ:

All these types of temperature wall condition were successfully implemented in the
developed numerical model and used during the investigation of real drying processes.

Symmetry boundary condition. The conditions at a symmetry boundary are no flow
or scalar flux across the boundary. Hence, the derivative of every properties at the axis
of symmetry was set to zero, ð›w=›rjr¼0 ¼ 0Þ: This was implemented by setting the
values at the axis of symmetry as the near by cells, i.e. wI ;0 ¼ wI ;1

Solution quality and validation
Usually a successful numerical algorithm should follow three mathematical concepts:
convergence, consistence and stability. Patankar (1980) formulated three new rules,
namely, conservativeness, boundedness and transportiveness, that are embedded into
the final volume scheme and are commonly accepted an alternatives for the rigorous
mathematical concepts of convergence, consistence and stability. In the present study,
the convergence of the numerical predictions were analyzed by two means. The first
was by reducing the control volume size and checking that the difference between the
results of the two simulations is negligibly small. Then the predictions of the numerical
simulations were compared with independent experimental data. The consistency of
the finite volume scheme is well known since the formulation of the discrete balance
equations of every control volume is equivalent to the formulation of the differential
balance equations. To assure solution stability under-relaxation technique was used.
This technique restrains undesirable oscillations, which can occur during the iterative
solution procedure. A correct choice of under-relaxation factors is essential for
cost-effective simulations. Too large values may lead to oscillatory or even divergent
iterative solutions and a value, which is too small, will cause extremely slow
convergence. Unfortunately, the optimum values of under-relaxation factors were flow
dependent and must be found on a case-by-case basis.

In order to validate the theoretical and the numerical models, the predictions of the
numerical simulations were compared with experimental data. The pneumatic drying
model was solved numerically for two drying processes, i.e. drying of PVC and sand
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particles. Comparison between the results of the two-dimensional model and the results
of other one-dimensional models and experimental data require a representation model
for presenting the two-dimensional results in “one-dimensional” manner. An average
technique was used to obtain the average values of the various solution properties in
the dryer cross section. The average value of any property, w, (except the temperature)
in the dryer cross sectional area was obtained by “mass weighted” method as follows.

w ¼
2p
R R

0
ruwr dr

2p
R R

0
rur dr

ð55Þ

The average temperature of each phase was evaluated by the mean bulk temperature,
or energy average fluid temperature across the tube.

Tave ¼
2p
R R

0
rucpTr dr

2p
R R

0
rucpr dr

ð56Þ

The first validation was done by comparison between the predications of the numerical
simulations and the experimental results of Baeyens et al. (1995) that were obtained in
a 1.25 m diameter and 25 m long pneumatic dryer. In this study, 180mm PVC particles
having density of 1195 kg/m3 and mass flow rate of 10.52 kg/s were dried with
1.51 kg/s air mass flow rate. Comparison between the predictions of the numerical
simulations and the experimental data for changes of air temperature and particle
moisture content with dryer length under known wall’s temperature conditions is
presented in Figure 5(a) and (b), respectively. During this study the computational grid
was made of 2000 £ 50 cells and it was assumed that in average the pipe wall
temperature is just about the outlet air temperature, as presented by Baeyens et al.
(1995), and it is falling linearly from 325 K at the inlet to 320 K at the outlet. In these
figures, the solid symbols represent the experimental data that were published by
Baeyens et al. (1995) and the two curves represent the predictions of the numerical
simulations (present paper and Levy and Borde, 1999). It is clearly seen that the
numerical model predicted the temperature profile (Figure 5(a)) very well while the
predictions of the numerical simulations for the particle moisture content (Figure 5(b))
were fairly good. From these figures, it can also be seen that the heat and the mass
transfer rates during the second drying period (i.e. the curves gradient at low moisture
contents) was predicted very well.

The predictions of the numerical simulations for the drying of sand particles in a
laboratory scale pneumatic dryer were also compared with the experimental results of
Rocha (1988) (presented by Silva and Correa (1998)). The computational grid was made
of 1828£12 cells. 380mm sand particles having density of 2622 kg/m3 and solid mass
flow rate of 4.74£1023 kg/s were dried with 3.947 £ 1022 kg/s air mass flow rate in a
4 m high pneumatic dryer with diameter of 5.25 cm. Comparison between the
predictions of the numerical simulations and the experimental data for changes of gas
temperature, solid temperature, gas humidity and particle’s moisture content with
length under known wall temperature operating conditions is presented in
Figure 6(a)-(d), respectively. For this case it was assumed that in average the pipe
wall temperature is just about the outlet air temperature and it is falling linearly
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from 360 K at the inlet to 354 K at the outlet. In these figures, the star symbols
represent the experimental data of Rocha (1988) that were presented by Silva and
Correa (1998) and the other curves and symbols represent the predictions of various
models and numerical simulations. From these figures it can be seen that the
predictions of the two-dimensional numerical simulations fit fairly well with
the experimental data and both one-dimensional DryPak (Pakowski, 1996) and Levy
and Borde (1999) models.

Since the theoretical pneumatic drying model and the numerical simulations done in
the course of this study predicated successfully the most important flow parameters

Figure 5.
Comparison between the

predictions of the
numerical simulations.
(a) air temperature and

(b) particle moisture
content
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(gas temperature, solid temperature, gas humidity and particle’s moisture content) of
the drying process it was concluded that the presented model can be used for further
investigations.

Two-dimensional representation of the flow field
Due to the lack of two-dimensional experimental data (i.e. radial distribution), the
predictions of the numerical simulations for two-dimensional characteristics
distributions could not be validated. Based on the reliable one-dimensional validation
of the theoretical and the numerical models, it was decided to investigate the
two-dimensional distributions of the flow characteristics. In contrast to one-dimensional
simulation, two-dimensional simulations provide much more information about the
behavior of flow properties in every point of axisymmetry computational domain.

In order to investigate the capability of the theoretical and numerical models, the
predictions of the numerical simulations for the drying of 380mm sand particles in the
4 m high pneumatic dryer with a diameter of 5.25 cm were adopted. The radial
distributions of the dispersed phase and the gas phase velocities, particles and gas
moisture contents and gas phase temperature after 1, 2, 3 and 4 m from the pipeline inlet
are presented in Figure 7(a)-(e), respectively. As can be seen the radial distribution of
phases’ velocities result in uneven cross sectional particles’ concentration and moisture

Figure 6.
Comparison between the
numerical predictions
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content. Hence, special care should be placed in order to ensure the demand that all the
particles will have the required moisture content at the pneumatic dryer exit.

The formation of various boundary layers for both phases can be seen clearly
(Figure 7). A significant temperature difference between the central dryer region and
near wall region is evident. This is emphasized at the fully developed area which was
achieved about 3 m from the dryer inlet. The temperature differences in cross section of
the dryer cause radial particle’s moisture content distribution (Figure 7(c)). As can be
seen, solid particles at the proximity of the wall have higher moisture than in the dryer
central area. It should be mentioned that the lower velocities of both phases in the

Figure 7.
Radial distribution
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vicinity of the dryer wall also contribute to the lower heat and mass transfer between
the phases. In order to increase the heat and mass transfer at the boundary layer,
the wall’s temperature might be controlled by heating the dryer walls. Thus, the
developed model may provide a design tool for predicting the required wall
temperature. The gas moisture content, shown in Figure 7(d), is characterized by more
homogeneous distribution due to vapor diffusion in carrier gas.

Generally, the state of the dispersed phase at the dryer outlet is more significant
than that of the drying gas, since the particulate materials is the target product of
drying process. Properties variation may damage the final product quality. Therefore,
this type of numerical investigation may serve as a design tool in order to maximize the
products quality.

Conclusions
A finite volume approach for solving two-dimensional, two-fluids flows with heat and
mass transfer was developed for predicting the flow of wet particulate materials
through a pneumatic dryer. The model was solved for a two-dimensional axisymmetric
steady-state condition and considering axial and radial profiles for the flow variables.
A two-stage drying process was implemented. The predictions of the numerical
simulations were validated for two cases: drying process of wet PVC particles in a
large-scale pneumatic dryer and to the drying process of wet sand in a laboratory-scale
pneumatic dryer. The predictions of the numerical solutions were also compared with
the results of other numerical investigations. The successful comparisons validate the
theoretical and the numerical models. Radial distributions of the flow characteristics
were examined. The existence of boundary layers along the pipeline walls were
presented. Further investigations are needed in order to validate the two-dimensional
distribution of the flow characteristic.
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